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S1: Summary of published comparisons of top-down emissions to bottom-up estimates 

based on national data sources. 

Top-down (TD) estimates of total or oil and gas CH4 emissions regularly exceed bottom-up (BU) 

estimates based on emission inventories (26). Fig. S1 summarizes published comparisons 

between TD and BU estimates. (SC US: South-central US, DJ: Denver-Julesburg.) 

 
Fig. S1. Summary of published comparisons of top-down (TD) emissions to bottom-up (BU) estimates 

based on national data sources. Reported differences in CH4 emissions from TD studies in U.S. gas 

producing areas relative to BU estimates based on one or more of the commonly cited national sources of 

CH4 emissions data: the EPA Greenhouse Gas Inventory (GHGI) (36), the EPA Greenhouse Gas 

Reporting Program (GHGRP) (37), and the Emissions Database for Global Atmospheric Research version 

4.2 (EDGAR v4.2) (38). Colors distinguish the types of sources quantified (blue = all sources; purple = 

oil and gas sources only, though some studies report all fossil sources, which include non-oil and gas 

sources like geologic seepage and coal mines). Symbol shapes denote the basis for the BU estimate used 

to calculate a ratio. 
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S2: Comparison between estimates of top-down fossil CH4 from CH4 and ethane 

measurements. 

Because CH4 is emitted by both fossil and biogenic sources, such as wetlands, feedlots and 

landfills, top-down (TD) CH4 measurements estimate the combined fossil and biogenic flux. 

Because ethane has no biogenic sources and is the second most prevalent hydrocarbon in natural 

gas, the relationship of CH4 and ethane can be used to estimate the fraction of emissions that 

originate from fossil sources. Two independent estimates of TD fossil CH4 were used in the 

present analysis; similarity between them suggests robustness in our estimation of emissions 

from oil and gas infrastructure. 

Fossil CH4 emissions as reported by Karion et al. based on Smith et al. 

Smith et al. (29) reported measurements of CH4 and ethane from several flights in the study 

region. Measurements from one flight with light winds were used to determine the correlation of 

CH4 with ethane during discrete 45-second observation windows. Smith et al. analyzed in detail 

the representativeness of the flight, and why it captured the methane/ethane variability of the rest 

of the flights. Using this data, they estimated the fraction of emissions attributed to fossil sources 

under a combination of different methods. 

Karion et al. (19) used the results of Smith et al. (29) and reported that the fraction of CH4 

emissions from fossil sources in the Barnett Shale was is 79.5% (73.5% - 84%; 95% confidence 

interval (CI)). This central estimate was applied to the average TD CH4 estimate and to each of 

the individual flight estimates (Fig. 1 of main paper). Following this method, the average TD 

fossil CH4 emissions estimate for the Barnett Shale was 56 ± 10 Mg CH4/h. (This result excludes 

an additional flight on October 25
th

, 2013; see SI S7 for details.) 

Alternative estimate of fossil CH4 emissions using top-down ethane fluxes.  

Fig. S2A shows the remarkably consistent TD ethane estimates in Smith et al. (29). These six 

daily estimates ranged from 6.3 ± 3.5 to 6.8 ± 2.4 Mg C2H6/h and provide an alternative starting 

point to estimate fossil CH4.   

It is possible in principle to estimate fossil CH4 emissions from TD ethane measurements if one 

has a quantitatively reliable mass-weighted mean estimate of the methane/ethane ratio of fossil 

emissions from the entire region. However, such a methane/ethane ratio is not well known 

because it varies considerably among oil and natural gas industry segments and source types 

(45). These estimates should be viewed with caution, given their sensitivity to the sampling 

strategy. 

Specifically, the TD ethane estimate from each flight can be multiplied by a methane/ethane ratio 

(CH4:C2H6, hereafter) that is representative of fossil sources in the surveyed region to give a 

fossil CH4 estimate: 

𝐶2𝐻6 [
𝑘𝑔

ℎ
] × [

𝐶𝐻4

𝐶2𝐻6
]

𝑓𝑜𝑠𝑠𝑖𝑙
= 𝐶𝐻4𝑓𝑜𝑠𝑠𝑖𝑙

[𝑘𝑔/ℎ]       (S2.1) 

Smith et al. (29) identified three distinctive C2H6:CH4 ratios in the region from examination of 

the series of discrete 45-second observation windows during one of their flights; one for 

microbial sources (0%), and two for fossil sources: a low-ethane fossil source ratio (C2H6:CH4 
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centered around 1.8%; vol %), and a high-C2H6 fossil source ratio (C2H6:CH4 centered around 

9.6%; vol%). (Note that these ratios reported in Smith et al. are the inverse of the ratio shown in 

equation S2.1, and are volume based, instead of mass based.) Following a linear combination 

approach, their analysis suggests that for the study region, roughly 20% of the CH4 emissions are 

from microbial sources, 35% from low-ethane fossil sources and 45% from high-ethane fossil 

sources; with all of these estimates having significant uncertainty bounds. 

To determine the CH4:C2H6 ratio from observations in Smith et al. (29) for use in equation S2.1, 

the microbial source can be ignored since there is no ethane associated with those sources. Thus 

44% of the CH4 emissions from fossil sources would have the low-ethane fossil source ratio 

(C2H6:CH4= 1.8%; vol %) and 56% of the emissions the high-ethane fossil source ratio 

(C2H6:CH4 = 9.6%; vol %). Using this linear combination approach the CH4:C2H6 ratio (mass 

basis) would be 8.6. Consequently, if this CH4:C2H6 ratio is applied to the average TD ethane 

estimate of 6.6 Mg C2H6/h, TD fossil CH4 emissions would equal 57 tons CH4/h. This estimate is 

not independent from the result reported by Karion et al. (19); however, it provides a CH4:C2H6 

ratio that can be compared to alternative independent methods and it also shows that although 

there is significant heterogeneity in the CH4:C2H6 signals in the region (29, 45) the two 

distinctive signals from fossil sources are combined almost in equal parts. Thus, it is possible to 

determine a central estimate of the CH4:C2H6 ratio if it is weighted in such a way that the 

weighting factor is representative of the surveyed region. 

Reanalysis of the data collected by Smith et al. (29) can also provide a representative CH4:C2H6 

ratio (as an alternative method to the linear combination approach). Individual segments of CH4 

and ethane data from the representative flight were filtered for those cases with a significant 

CH4:C2H6 correlation (p-value ≤0.05, using the 45-second observation window method, as 

described in Smith et al. (29)), estimating an individual CH4:C2H6 ratio for each data point. For a 

total of 1,773 data points or windows, 83% had a significant CH4 to ethane correlation. The 

integrated ethane enhancements measured for each data point were used as the weighting factor 

to derive an (ethane mass weighted) average CH4:C2H6 ratio. Using this method, the CH4:C2H6 

ratio (mass basis) would be 8.4 ± 0.4. When this ratio is applied to the average ethane estimate, 

TD fossil CH4 emissions would be 55 ± 4 Mg CH4/h. 

Independent fossil CH4:C2H6 ratio from ground based measurements reported by Yacovitch et al. 

Reanalysis of an independent dataset of ground-based measurements of CH4 and ethane in the 

region was used to produce a characteristic fossil CH4:C2H6 ratio that can be applied to the TD 

ethane estimates as described in equation S2.1. We caution that such a CH4:C2H6 ratio is not well 

known because it varies considerably among oil and natural gas industry segments and source 

types and is sensitive to the sampling strategy used to collect the data (45).   

Yacovitch et al. (32) estimated emission rates from 170 plumes of mobile ground-based 

atmospheric measurements. Plumes from this data set were filtered for those cases where CH4 

and ethane had a significant correlation (R
2 

≥ 0.85; 60% of the plumes). For each plume in the 

final dataset an individual CH4:C2H6 ratio was calculated, obtaining a distribution of CH4:C2H6 

ratios. Finally, the plume-specific ethane emission rates estimated by Yacovitch et al. were used 

as the weighting factor to produce an average CH4:C2H6 ratio (mass basis) of 8.7 ± 2.8. 

(Yacovitch et al. reports estimated CH4 emission rates for each plume; an ethane emission rate 

can be calculated using the individual CH4:C2H6 ratios.) When this ratio is applied to the average 
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TD ethane estimate, fossil CH4 emissions would be: 57 ± 18 Mg CH4/h, which is in agreement 

with the TD fossil estimate of 56 ± 10 Mg CH4/h (Fig. S2B). 

The CH4:C2H6 ratio derived from Yacovitch et al. (32) (8.7 ± 2.8; mass basis) is similar to the 

CH4:C2H6 ratio that would be obtained from Smith et al. (29) (8.4±0.4; mass basis) and the 

resulting TD fossil CH4 estimates produced from the different methods are not significantly 

different. Our CH4:C2H6 estimate of 8.7 is also similar to those collected in ground canisters 

(6.5-9.8; mass basis converted from fossil CH4 flux and Keeling plot based C2H6:CH4; vol%) and 

within the range of natural gas composition reported in previous studies in the Barnett region 

(45). We reiterate that single regional CH4:C2H6 ratios should be viewed with caution due to the 

considerable variability among oil and natural gas industry segments and source types (45). The 

sampling scheme in Yacovitch et al. was not designed to produce an unbiased estimate of ethane 

to methane and may have underrepresented areas of conventional oil production with ethane-rich 

emissions (45). 
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Fig. S2. Estimates of top-down (TD) fossil CH4 from CH4 and ethane measurements and comparison 

against custom bottom-up (BU) estimates (this work). (A) TD ethane estimates for the individual flights, 

as reported in Smith et al. (29). The red dotted line shows the average, with the shaded grey area showing 

the reported standard deviation of the mean. (B) TD and BU fossil CH4 estimates. The blue (TD) and 

orange (BU) estimates were previously shown in Fig. 1 (main text). The purple estimates reflect the 

independent TD estimate that was determined in the present section; using the ethane estimates from 

Smith et al. and the fossil CH4:C2H6 ratio (8.7 ± 2.8; mass basis) that was derived from reanalysis of 

Yacovitch et al.
 
(32).  
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S3: Bottom-up estimates of CH4 emissions: variations to statistical estimator. 

In this section, we describe the two variations to the statistical estimator presented in the methods 

section of this work. We use the statistical estimator to produce emissions probability density 

functions (pdfs) from the systematic and high-emitter-biased samples, which are then used to 

derive emission factors for productions sites, compressor stations, and processing plants. These 

two variations produce similar results to the power law estimator that generated the results 

shown in the main body of this paper. 

Variation 1 - Estimates using only the systematic samples of production sites, compressor 

stations and processing plants. 

The facility-level empirical distributions are highly positively skewed, and become symmetric 

when plotted as the logarithm of emissions (Fig 3A and Fig 3B). This makes the lognormal 

distribution an obvious candidate for the pdfs. Lognormal distributions are common in problems 

of failure and breakage (46), and so it is not surprising to encounter them in this problem. A 

lognormal distribution is also expected if the leakage rate is the result of a series of independent 

or partially independent random numbers all multiplied together (because the logarithm of the 

product is the sum of the logs of the random numbers, which is a sum of random numbers and 

thus asymptotically normal by the Central Limit Theorem). Imagine that a valve has failed or 

been accidentally left open, and suppose that this connects the atmosphere, through a series of 

pipes, openings and chambers of different diameters, to a pressurized natural gas source (i.e. the 

reservoir). If K is the conductivity of the system, P is the pressure gradient from source to 

atmosphere, and F is the fraction of CH4 in the gas, then the leak rate of CH4 is the product FPK. 

Moreover, K is the harmonic mean of a series of conductivities within the system, which itself 

can be expressed as a product.    

We assume throughout that the actual systematic emission rate distributions are lognormal. Let x 

be the logarithm of emissions and x* be the smallest natural log emission rate that can be used 

with the “mobile flux plane method” of Rella et al. (30) (estimated to be -2.57 which is ln(0.08 

CH4/h)) or that of Mitchell et al. (12) (estimated to be -0.369 which is ln(0.691 kg CH4/h)). Sites 

in the data sets with natural log emission rates below x* are known only to have rates between 

minus infinity (zero on an arithmetic axis) and x*.  

Because x is normally distributed: 

𝑝(𝑥|𝜇𝑗, 𝜎𝑗) ≡
1

√2𝜋𝜎𝑗
𝑒

−
(𝑥−𝜇𝑗)

2

2𝜎𝑗
2

 ,         (S3. 1) 

where the subscript j is 1 for productions sites, 2 for compressor stations, and 3 for processing 

plants. 

Let (x) be the cumulative standard normal: 

Φ(𝑥) ≡ ∫
1

√2𝜋
𝑒−

𝑣2

2
𝑥

−∞
𝑑𝑣           (S3.2) 
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Note that: 

∫ 𝑝(𝑣|𝜇, 𝜎)𝑑𝑣 =Φ (
𝑥−𝜇

𝜎
)

𝑥

−∞
.           (S3.3) 

With this notation, the log-likelihood function for the random sample of facility type j, with S0j 

observations at or below the detection limit and Srj observations above the detection limit, is: 

ℓ1(𝜇𝑗, 𝜎𝑗) =  𝑆0𝑗𝑙𝑛Φ (
𝑥𝑗

∗−𝜇𝑗

𝜎𝑗
) −𝑆𝑟𝑗𝑙𝑛𝜎𝑗 − ∑

(𝑥𝑖−𝜇𝑗)
2

2𝜎𝑗
2

𝑆𝑟𝑗

𝑖=1
, j=1,2,3,      (S3.4) 

Where x1
* 

is the lowest emission rate that can be used for the method of Rella et al. (30), and 

x2
*
=x3

*
 is the corresponding lowest rate for the method of Mitchell et al. (12). 

 
We obtained 

maximum likelihood estimates of the means and standard deviations in equation (S3.4) and their 

confidence limits in the usual way.  The mean emissions rate on the arithmetic scale, Mj, is equal 

to: exp(𝜇𝑗 +
𝜎𝑗

2

2
).  This is the quantity we are after for the bottom-up (BU) estimates. Although 

maximum likelihood estimates of Mj are known to be biased, the bias is small in our study. Using 

the formula in Wilson et al. (47) the expected bias is ~3% for production sites and processing 

plants and ~1% for compressor stations.  These values should be smaller for the larger samples 

available with the power law estimator and the second variation (below). Also, although 

measurement errors inflate the estimated variance, this effect is also small. Measurement errors 

for the systematic samples are on the order of 25% for Rella et al. (30) and 50% for Mitchell et 

al. (12) on the arithmetic scale. At 50% the variance of the logarithms would be inflated by ~0.2, 

while the estimates of the variances are between 2 and 5 (Fig. 3A and Fig. 3B, main text). While 

the estimated measurement error in Yacovitch et al. (32) is significantly higher than in the others 

(0.33x - 3.3x), which would be one unit on the logarithmic scale, it appears by the agreement 

between this first variation (which does not use Yacovitch et al.) and the main statistical 

estimator (which does) that the actual measurement error in Yacovitch et al. does not affect our 

estimations to a significant extent. 

Variation 2 - Estimates that integrate the systematic samples (Mitchell et al., Rella et al.), and 

the high-emitter biased samples of Lan et al.and Yacovitch et al. by estimating the bias 

mechanistically based on Gaussian plume theory.   

Each observation in the high-emitter-biased samples corresponds to a measured set of 

meteorological conditions (wind speed and stability class). Given a lognormal distribution of 

emissions rates, what is the likelihood of an observation of natural log emissions rate xi 

conditional on the observed wind speed Wi and stability class si? Again, the bias in the high 

emitters sample occurs because large emission sources can be detected from farther away than 

small emission sources. For example, if the detectable length of a plume of strength xLarge is 

twice that of a plume of strength xSmall, then this doubles the probability density of sites in the 

high-emitter biased sample emitting at xLarge relative to those emitting at xSmall.  

We used the Gaussian dispersion theory (43), to calculate the bias conditional on Wi and si. The 

functions for the vertical and horizontal standard deviations (𝜎𝑦 and 𝜎𝑧) were calculated using 

power-law expressions based on coefficients determined by Gifford (44). These parameters 

depend on stability class and distance from the source: 𝜎𝑦(𝑠, 𝐷) and 𝜎𝑧(s, D). We can use these 
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formulae to calculate the maximum distance over which a source of strength E=e
x
 could be 

detected along a plume’s centerline as in the previous section, but here conditional on stability 

class and wind speed, by solving 
0

=
𝑒𝑥𝐵

𝑊𝜎𝑦(𝑠,𝐷∗)𝜎𝑧(𝑠,𝐷∗)) 
  numerically for the function D*(s,W,x). 

This gives maximum detection distance as a function of stability class, wind speed and the 

natural logarithm of the emissions strength. Thus, the likelihood of observing an emissions 

source of type j and strength xk under observed conditions sk and Wk is: 

q𝑗(x𝑘|s𝑘, W𝑘) =
𝐷∗(s𝑘,W𝑘,x𝑘)

1

√2𝜋𝜎𝑗
𝑒

−
(x𝑘−𝜇𝑗)

2

2𝜎𝑗
2

∫ 𝐷∗(s𝑘,W𝑘,𝜈)
1

√2𝜋𝜎𝑗
𝑒

−
(𝜈−𝜇𝑗)

2

2𝜎𝑗
2∞

0
𝑑𝑣

,        (S3.5) 

and so the log likelihood functions are: 

ℓ3(𝜇𝑗 , 𝜎𝑗) =  𝑆0𝑗𝑙𝑛Φ (
𝑥𝑗

∗−𝜇𝑗

𝜎𝑗
) −𝑆𝑟𝑗𝑙𝑛𝜎𝑗 − ∑

(𝑥𝑖−𝜇𝑗)
2

2𝜎𝑗
2 + ∑ ln (q𝑗(x𝑘|s𝑘, W𝑘))

𝑆𝑏𝑗

𝑘=1

𝑆𝑟𝑗

𝑖=1
, j=1,2,3.  

(S3.6) 

The only unknowns in these equations are the means and standard deviations for each of the 

three types of facilities (production pads, compressor stations and processing plants). We solved 

for the values of these that maximize the above functions using a direct search algorithm and 

calculated 95% limits by inverting the Likelihood Ratio Test. 

The results for each of the three estimation methods (Table S1) show that the estimates are 

robust to changes in method. Table S2 summarizes the different datasets used for each method. 

In summary, with the (main) statistical estimator we were able to integrate systematic samples 

with samples biased towards high emitters, producing emission factors representative of the 

entire population of sites. 

Agreement between the power law estimator and variation 1 illustrate that even though dataset 

(iv) and data set (v) are of systematic samples, they did not under sample high emitters. 

Therefore, it is possible to use this first variation of the statistical estimator to produce 

representative emission factors. Agreement between the power law estimator and variation 2 

shows that it is possible to estimate the bias of the high emitters mechanistically- by 

incorporating information related to the dispersion of emissions (under Gaussian dispersion 

theory) into the statistical estimator. This second variation produces an estimator that is 

internally consistent with the measurement approaches, since similar information about the 

dispersion of emissions (e.g., stability classes and meteorological conditions) is used by the 

sampling teams to estimate emission strengths from the measured concentrations (31, 32). 
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Table S1. Emission factors (EF) derived from the three statistical estimators. Power law estimator: 

Integrates systematic samples and high-emitter biased samples, using a power law to estimate the bias 

statistically. Variation 1: Estimates using only the systematic samples. Variation 2: Integrates systematic 

samples and high-emitter biased samples, estimating the bias mechanistically with a Gaussian plume 

model. EFs are determined for (A) productions sites, (B) compressor stations, and (C) processing plants. 

The 95% confidence interval (CI) of each parameter is shown between parentheses. 

 (A) Production sites 

Method   EF kg CH4/h 

Power law estimator -1.79 (-2.13, -1.45) 2.17 (1.96, 2.39) 1.76 (1.27, 2.45) 

Variation 1 -1.84 (-2.20, -1.49) 2.21 (1.89, 2.52) 1.81 (1.73, 1.89) 

Variation 2 -1.83 (-2.19, -1.47) 2.23 (1.91, 2.55) 1.94 (1.36, 2.75) 

 (B) Compressor stations 

Method   EF kg CH4/h 

Power law estimator 3.05 (2.77, 3.32) 1.49 (1.32, 1.67) 64.2 (48.8, 84.4) 

Variation 1 3.13 (2.86, 3.40) 1.38 (1.19, 1.57) 59.6 (45.9, 77.3) 

Variation 2 3.13 (2.86,3.40) 1.38 (1.19,1.57) 59.4 (45.5, 77.6) 

 (C) Processing plants 

Method   EF kg CH4/h 

Power law estimator 4.41 (3.92, 4.91) 1.31 (1.00, 1.62) 195 (121, 315) 

Variation 1 4.34 (3.83, 4.85) 1.27 (0.912, 1.63) 173 (104, 285) 

Variation 2 4.36 (3.86, 4.86) 1.26 (0.910, 1.62) 173 (106, 283) 

 

Table S2. The table shows whether the sampling schemes behind each dataset were designed to produce 

representative samples of emission rates (systematic), or biased toward high emitters (high-emitter-

biased); also shown for each dataset is N, the number of samples, as well as the range and mean of the 

reported emission rates (see Methods). This work’s systematic sample of processing plants includes the 

combined set of processing plants and facilities classified as compression, dehydration, and treatment 

(C/D/T) sites in Mitchell et al. (12).    

Source 
Type of 
samples 

Dataset, reference N 
Range 
(kg/h) 

Mean 
(kg/h) 

Used in method: 

(1) (2) (3) 

Production 
sites 

systematic (iv), Rella et al. (30) 186 0.0 – 48 1.2   

 high-emitter-
biased 

(vi), Yacovitch et al. 
(32) 

48 0.15 - 287 34   

 high-emitter-
biased 

(vi), Lan et al. (31) 33 0.01 - 58 10    

         
Compressor 

stations 
systematic (v), Mitchell et al. 

(12) 
101 0.69 – 696 54   

 high-emitter-
biased 

(vi), Yacovitch et al. 
(32) 

10 0.60 – 1,360 194   

 high-emitter 
biased 

(vi), Lan et al. (31) 7 21 – 2,119 698    

         
Processing 

plants 
systematic (v), Mitchell et al. 

(12) 
24 3.3 – 604 141   

 high-emitter-
biased 

(vi), Yacovitch et al. 
(32) 

2 162 - 163 163   

 high-emitter-
biased 

(vi), Lan et al. (31) 2 746 – 1,723 1,234    
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S4: Comparison between results using statistical estimators (this work) to those from Lyon 

et al. 

Lyon et al. (27) used a two-step Monte Carlo simulation process to estimate emission factors 

(EF) for two of the major oil and gas emission sources (compressor stations and processing 

plants). The first step involved drawing emission rates from a “sampled distribution” (systematic, 

quasi-random sample), and the second step involved drawing emission rates from a “fat tail site-

distribution” (biased towards high-emitters). A key step in this process is selecting the 

probability at which emission rates are drawn from the fat-tail distribution. Lyon et al. estimated 

this probability based on the number of observed fat-tail sites compared to the total sites in the 

region. Lyon et al. reported sensitivity tests showing the effect of alternative assumptions for the 

fat–tail probability within a range of 0% - 5%. The use of empirical data to set the probability of 

fat-tail sites—as done by Lyon et al.—requires arguably arbitrary choices of what constitutes the 

emission threshold for fat-tail sites and the frequency of fat-tail sites. 

For natural gas producing sites, Lyon et al. (27) used a more complex approach than the two-step 

Monte Carlo process used for compressor stations and processing plants. This method, described 

in detail in Zavala-Araiza et al. (42), is based on characterizing the skewed distribution of 

production site emissions using the concept of functional super-emitters: sites with an excess of 

emissions resulting from abnormal or otherwise avoidable operating conditions, such as 

malfunctioning equipment. This excess of emissions can be characterized by looking at the 

proportional loss rate (CH4 emissions relative to CH4 produced), thus providing an alternative 

means of estimating the contribution of the fat-tail sites to the emissions from the entire 

population of sites. 

Zavala-Araiza et al. (42) classified samples into gas production cohorts and then into three 

categories based on the percentile of proportional loss rates for each gas production cohort: α 

sites (below the 85
th

 percentile of proportional loss rates) and β and γ sites (equal or above the 

85
th

 percentile of proportional loss rate), with β and γ sites being considered functional super-

emitters. This method is sensitive to the selection of the threshold that distinguishes α-sites from 

functional super-emitters, as well as the probability of the highest functional super-emitters (γ 

sites). Both parameters were chosen based on empirical observations; however, the selection of 

such thresholds still requires a somewhat arbitrary choice to be made. Zavala-Araiza et al. report 

sensitivity analyses on the selection of both parameters. 

The three statistical estimators that are presented in this work (see Methods and Section S2 in SI 

Appendix) provide an alternative way to derive emission distributions (pdfs) for the entire 

population of different oil and gas sources without having to choose specific thresholds or 

probabilities of fat-tail sites. Table S3 compares the emission factors reported by Lyon et al. (27) 

against the emission factors that were estimated in the present work. For the case of compressor 

stations the mean emission factors differ by 12%, with overlapping 95% confidence intervals 

(CI). This result suggests that the fat-tail frequency selected by Lyon et al. (1%) is similar to the 

frequency at which high emitters are represented in the pdf produced in this work (Fig. 3C and 

Fig. 3D, main text). 

For the case of processing plants, Lyon et al. (27) divided this source into small processing plants 

(EF = 84 kg CH4/h; 95% CI: 45 - 133 kg CH4/h) and large processing plants (EF = 190 kg 
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CH4/h; 95% CI: 112 - 301 kg CH4/h).  The average emission factor (weighted in terms of 

regional population of small and large processing plants) of 145 kg CH4/h is 26% lower than the 

one presented in this work. The emission factors are within the CI of each other. Results from 

this work suggest that the frequency of the fat-tail processing plants should be greater than the 

2% used by Lyon et al. If the frequency of fat-tail processing plants was set to roughly 9% (both 

for small and large processing plants), the method used by Lyon et al. would yield an emission 

factor that aligns with the one presented in this work.  

The largest difference in emission factors was for production. Looking at the results of the 

statistical estimators in the context of the functional super-emitter framework presented by 

Zavala-Araiza et al.
 
(42) would imply that the population of functional super-emitters in the 

Barnett Shale is bigger than the one assumed for that analysis (> 85
th

 percentile of each gas 

production cohort) and 0.25% probability for γ sites. For a threshold that identifies functional 

super-emitters in the range of the 70
th

 – 85
th 

percentile, and a probability of γ-sites of roughly 

1.5% (compared to a quarter of a percent used in Zavala-Araiza et al.), the average emission 

factor for production sites would be within a 10% difference from the one presented in this work.  

Table S3. Comparison between emission factors (EF) from Lyon et al.
 
(27) and the ones calculated in this 

work, following the statistical estimator methods described in the Methods section. Values shown are 

central estimates and 95% confidence interval (CI). 

 EF (kg CH4/h) 

Source As reported in Lyon 
et al.(27) 

This work a 

Production sites  1.0 (0.97, 1.1) b 1.8 (1.3, 2.5) 

Compressor stations 72 (50, 100) 64 (49, 84) 

Processing plants  145 (84, 213) c 195 (121, 315) 
a 
Emission factors shown for “this work” represent results from power law estimator (see Methods). 

b
 Emission factors for production sites reported in Lyon et al.

 
(27) were divided into gas production cohorts. The 

value reported here represents the average across all cohorts, excluding sites with no gas production (which had an 

emission factor of 0.01 kg CH4/h). If those sites were considered, the average from Lyon et al. would be 0.87 (0.82, 

0.92) kg CH4/h and the average of the present work would be: 1.5 (1.1, 2.1) kg CH4/h. 
c
 Processing plants in Lyon et al.

 
(27) were divided into small and large. The value reported here represents the 

average of both categories. 

If the emission factors presented by Lyon et al.
 
(27) were used to produce spatially resolved 

bottom-up (BU) estimates for each of the seven flights shown in Fig. 1 (main text), the average 

BU total CH4 estimate would be 62 ± 7 Mg CH4/h and the average BU fossil CH4 estimate would 

be 42 ± 3 Mg CH4/h, and these estimates would be within a 13% and 26% difference, 

respectively, from the top-down (TD) CH4 estimates presented in this work (Table S10). When 

estimates reported by Lyon et al. are used, the importance of an accurate account of activity 

factors as well as the presence of high emitters is still highlighted (see Fig. S3, for spatial 

distribution of activity factors). Nonetheless, the estimation methods developed in the present 

work provide a more integrative way to obtain representative emission factors without the need 

to make arbitrary choices about the fat tail of the distributions and the frequency of high emitters. 
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Fig. S3. Activity factors for the oil and gas major sources of CH4 emissions aggregated into 4 km by 4 km 

grid cells in the 25-county Barnett region (total area is 58,000 km
2
). Maps show counts of production 

sites, compressor stations, and processing plants per grid cell (see Table S4 for total counts). As a 

reference, the maps also show the 8 core county region (area is 17,400 km
2
); this area encapsulates where 

most of the oil and gas sites and facilities are located (27) and was used as a point of comparison in 

previous studies (19). 

Table S4 compares results reported in Lyon et al.
 
(27) against the present work, when emissions 

are spatially resolved for the 25-county Barnett region (instead of the individual flights). The 

activity factors are the same as the ones reported in Lyon et al. For the present work, the only 

changes apply to the emission factors from production sites, compressor stations, and processing 

plants. Lyon et al.’s BU estimate of total CH4 oil and gas emissions is 20% than the BU 

presented in this work. 
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Table S4. Comparison of bottom-up (BU) estimate of emissions for the spatially resolved 25-county 

Barnett region, for the same source categories previously estimated in Lyon et al.
 
(27). Categories shown 

in bold reflect sources whose emission factors were updated in the present work using the estimation 

methods described in the Methods section (Table 1, main text). 

Source 
Activity factor 
reported in Lyon 
et al. (29) 

Emissions reported in Lyon et 
al. (27) (kg CH4 /h) 

Emissions from this work (kg 
CH4 /h) 

Production sites 

15,044 well 
pads 

Gas production sites 
16,400 (15,400 – 17,300) 

30,900 (22,100 – 43,200) 

5,842 well pads 
Oil production sites 
1,800 (1,700 – 1,900) 

    

Compressor stations 

259 facilities 
Gathering compressor stations 
18,700 (12,900 – 26,000) 

18,100 (13,700 – 23,800) 

17 facilities 
Transmission & storage 
compressor stations 
1,600 (850 – 1,700) 

    

Processing plants 38 plants 5,500 (3,700 – 8,100) 7,400 (4,600 – 12,000) 

Gathering pipelines 20,100 miles 940 (760 – 1,200) 940 (760 – 1,200) 

Well completions 
38 gas wells | 
36 oil wells 

150 (30 – 290) 150 (30 - 290) 

Transmission pipelines 3,300 miles 230 (190 – 300) 230 (190 - 300) 

Local distribution 
5,730,000 
inhabitants 

930 (750 – 1,600) 930 (750 – 1,700) 

O&G subtotal  46,200 (40,000 – 54,100) 58,600 (48,400 – 73,021) 

Fossil subtotal  48,400 (42,100 – 56,400) 60,700 (50,500 – 75,200) 

Biogenic subtotal  24,000 (17,200 – 30,100) 24,000 (17,600 – 29,800) 

Emissions total  72,300 (63,400 – 82,400) 84,700 (72,600 – 100,300) 

 

In summary, the estimation methods presented in this work provide additional confidence on the 

estimation of BU emissions, providing a method that seamlessly derives a continuous pdf that is 

representative of the entire population of sites (for each source), eliminating the necessity of 

dealing with the fat-tail of sites in a somewhat ad hoc manner. 

The framework of functional super-emitters developed by Zavala-Araiza et al.
 
(42) also provides 

a way to operationally identify sites with emission reduction opportunities. Future work will 

adapt the estimation methods developed in the present work to the functional super-emitter 

framework in such a way that there is no need for arbitrary assumptions about the thresholds. As 

a first step, section S5 analyzes the relationship between emissions and produced or processed 

gas. The potential policy implications in terms of emission reduction opportunities of accurately 

identifying functional-super-emitters are described in detail in Zavala-Araiza et al. 

Because the source regions for the different flights differ from the 25-county Barnett source 

region (see Fig. S3 and Fig. S4), the oil and gas BU estimate presented in Table S4 (59 Mg 

CH4/h) is different from the mean BU derived from the flight envelopes (50 Mg CH4/h). Table 
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S5 and Table S6 compare BU estimates spatially resolved for the 25-county region as well as for 

each of the source regions from the individual flights. Table S6 also compares the 25-county BU 

estimate against publically available inventories (spatially resolved for the same source region).  

 
Fig. S4. Boundaries of the source regions estimated to be sampled by mass balance flights and for which 

bottom-up (BU) inventories were developed. Baseline flight envelopes provided by the authors of Karion 

et al. (19). 
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Table S5. Comparison of BU estimates for the source regions of each of the flights and the Barnett 25-

county region (with 95% confidence intervals (CI)). 

BU estimate 
O&G emissions   

(Mg CH4/h) 

Fossil 

emissions 

(Mg CH4/h) 

Biogenic 

emissions 

(Mg CH4/h) 

Total emissions 

(Mg CH4/h) 

March 25, 2013 44 (36, 55) 44 (36, 55) 9 (6, 9) 54 (45, 65) 

March 27, 2013 41 (34, 50) 41 (35, 51) 18 (11, 25) 60 (50, 72) 

March 30, 2013 57 (47, 71) 58 (48, 72) 23 (16, 30) 83 (70, 98) 

October 16, 2013 52 (43, 64) 52 (44, 65) 22 (15, 29) 76 (64, 90) 

October 19, 2013 51 (42, 63) 52 (43, 64) 18 (11, 25) 71 (60, 85) 

October 20, 2013 56 (46, 70) 57 (47, 71) 22 (14, 29) 80 (68, 96) 

October 28, 2013 51 (42, 63) 52 (43 64) 20 (13, 27) 73 (62, 87) 

Average from flights 50 (46, 54) 51 (47,55) 19 (16, 22) 71 (64,78) 

Barnett 25-county 59 (48, 73) 61 (50, 75) 24 (18, 30) 85 (73, 100) 

 

Table S6 Comparison of top-down (TD) and bottom-up (BU) CH4 emission estimates and leak rates for 

the 25-county and flight envelope Barnett region with alternative emission estimates from Lyon et al. (27) 

based on the United States Environmental Protection Agency (EPA) Greenhouse Gas Inventory (GHGI) 

(36), EPA Greenhouse Gas Reporting Program (GHGRP) (37), and Emissions Database for Global 

Atmospheric Research v4.2 (EDGAR v4.2) (38) (with 95% confidence intervals (CI)). Calculation of CI 

is discussed in S7. 

 BU 25-county BU flight envelopes TD flight envelopes 

This work 

O&G CH4 emissions (Mg CH4/h)
 
 

59 (48 – 73) 50 (46 – 54) 56 (47 – 66)
 b
 

EPA GHGI 

O&G CH4 emissions (Mg CH4/h) 
31.0 NA NA 

EPA GHGRP 

O&G CH4 emissions (Mg CH4/h) 
17.0 NA NA 

EDGAR v4.2 

O&G CH4 emissions (Mg CH4/h) 
10.8 NA NA 

Gas production (Mg CH4/h)
a
 3,945 3,782 3,782 

Leak rate 1.5% (1.2 – 1.9%) 1.3% (1.2 – 1.4%) 1.5% (1.2 – 1.7%) 

a 
October 2013 daily average gas production (standard cubic feet / day) was converted to a CH4 flux using a regional 

production weighted-average gas production of 88.5% and a CH4 density of 19.2 g / standard cubic feet. 
b
 For the TD estimate, this row shows fossil CH4 emissions, due to the fact that a TD estimate cannot differentiate 

between fossil emissions and oil and gas emissions. However, as shown in Table S5, there is only a small difference 

between the average fossil and oil and gas BU estimates for the flights. 
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S5: Analysis of high emitters as a function of produced or processed gas. 

Here, we analyze the relationship between emission rates and produced or processed gas for each 

source. Even though facility emission rates depend only weakly on the total amount of gas 

produced or processed, facility level emissions as a fraction of the total CH4 produced or 

processed (hereafter, proportional loss rate) is a more effective metric than absolute emissions to 

identify sites with avoidable emissions (e.g., malfunctioning equipment)
 
(42). 

We assume that the distribution of emission rates, as well as the distribution of produced or 

processed gas, are lognormal (see section S3). Let x1 be the logarithm of emission rates and x2 

the logarithm of total CH4 produced (for production sites) or total CH4 processed (for compressor 

stations and processing plants). If we define the proportional loss rate as the ratio of CH4 emitted 

to CH4 produced/processed, x3, then the logarithm of the proportional loss rate can be written as: 

𝑥3 = 𝑥1 − 𝑥2             (S5.1) 

Using variation 2 of the statistical estimator (see section S3), it is possible to estimate the 

probability density function (pdf) of emissions conditional on production/throughput P(x1|x2), 

when μ1 is expressed as a linear regression of production: 

𝜇1 = 𝐴 + 𝐵𝑥2             (S5.2) 

We estimate the pdf of x1 (logarithm of emission rates conditional on production/throughput) 

with parameters (μ1, σ1), for each of the sources. 

Similarly we can estimate the pdf of x2 (logarithm of total produced or processed CH4), with 

parameters (μ2, σ2) for each of the sources. Since both x1 and x2 are normally distributed, we can 

express the joint density as a bivariate normal distribution D(x1, x2) (Fig. S5A): 

𝐷(𝑥1, 𝑥2) =
1

2𝜋𝜎1𝜎2√1−𝜌2
𝑒

−
𝑧

2(1−𝜌2)          (S5.3) 

Where: 

𝑧 ≡
(𝑥1−𝜇1)

𝜎1
2 −

2𝜌(𝑥1−𝜇1)(𝑥2−𝜇2)

𝜎1𝜎2
+

(𝑥2−𝜇2)

𝜎2
2   

And: 

𝜌 ≡
𝑉12

𝜎1𝜎2
. 

Using equation S5.1, it is possible to express x2 as a function of x1 and x3, thus expressing the 

joint density (equation S5.3) as a function of emission rates and proportional loss rates, D(x1,x3). 

Consequently, the marginal probability of proportional loss rates P(x3) can be calculated as: 

𝑃(𝑥3) = ∫ 𝐷(𝑥1, 𝑥3)
∞

−∞
𝑑𝑥1           (S5.4) 

Fig. S5B and Fig. S5C show the marginal probability of the proportional loss rates and the 

cumulative distribution of proportional loss rates. From this analysis it is possible to infer that 

10% of the processing plants emit at least 0.6% of the gas they process. A higher proportion of 

compressor stations and production sites have higher proportional loss rates: 10% of the 
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compressor stations emit at least 3.6% of the gas they process and 10% of the production sites 

emit at least 5.2% of the gas they produce. 

 
 
Fig. S5. High emitters as a function of production or throughput. (A) Contour plots of the joint density of 

emission rates and production/throughput for each of the sources. The color shows the increase in the 

joint density (darker red, greater density). (B) Marginal probability of the proportional loss rate of each of 

the sources. (C) Cumulative distribution of the marginal probability of proportional loss rates for each 

source. 
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S6. Climate implications of electricity generated with Barnett natural gas vs. coal. 

All data and calculations used in this analysis are available in the file: Zavala et al TWP.xls.   

Materials and methods. 

Using the Technology Warming Potential (TWP) framework of Alvarez et al. (1), we compare 

the climate implications of electricity generated from a power plant using natural gas produced in 

the Barnett Shale region relative to electricity generated at typical coal-fired power plants in 

Texas. The TWP is the ratio of the total cumulative radiative forcing, up to a time horizon TH, 

caused by the cumulative emissions of CO2 from the gas plant (from the combustion of the gas, 

along with CO2 from production and transportation of the fuel) plus the cumulative CH4 

emissions associated with the production, processing and distribution of the gas, and the 

corresponding quantities for the coal plant (coal production also results in CH4 emissions). 

Values of the TWP greater than one mean that the gas plant causes more radiative forcing than 

the coal plant over the first TH years of operation. Values less than one mean the reverse. TWPs 

are functions of TH, because CH4 has a much shorter residence time in the atmosphere than CO2. 

We make the comparison for Dallas-Fort Worth electricity to avoid the complication of long-

distance gas transport and seasonal storage. We consider the fleet conversion TWP, which 

assumes a continuous stream of emissions starting at the beginning of an analytical time horizon 

(pulse and service life TWPs are provided in the electronic spreadsheet Zavala et al TWP.xls, tab 

‘TWP calcs’). 

We examined a range of heat rates for natural gas electric generating units operating in the 25-

county Barnett Shale region or contiguous counties. These units account for about 18% of total 

2013 generation from natural gas fired power plants in Texas, and exhibit a similar distribution 

of efficiencies as the rest of the Texas natural gas power plant fleet. Since no coal plants are 

located within the region, we considered heat rates typical of the Texas fleet of coal plants. Heat 

rates were derived from 2013 operating data reported to the EPA Clean Air Markets Program 

(48). The type of coal used at Texas plants was obtained from EIA form 923 data for 2013 (49).   
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Table S7. Input for radiative forcing calculations.   

Power plant 
Emission 

case 
Heat rate 
(Btu/kWh) 

Emissions (kg/mmBtu) Emissions (kg/mmBtu) 

Upstream 
CH4 

Upstream 

CO2 ⱡ 
Combustion 

CO2* 
Upstream 

CH4 

Upstream 

CO2 ⱡ 
Combustion 

CO2* 

Average Dallas-
Fort Worth gas 

base Barnett 
leakage 

8,200 0.285 5.00 53.1 2.34 41.0 435 

Best Dallas-Fort 
Worth gas 

base Barnett 
leakage 

6,600 0.285 5.00 53.1 1.88 32.9 349 

Worst Dallas-
Fort Worth gas 

base Barnett 
leakage 

14,300 0.285 5.00 53.1 4.08 71.5 759 

Average Texas 
coal (LIG) 

low gassy 
(LIG) 

9,800 0.058 0.00 97.7 0.57 0.00 959 

Average Texas 
coal (SUB) 

low gassy 
(SUB) 

9,800 0.011 1.10 97.2 0.11 10.8 954 

Average Texas 
coal (BIT) 

high gassy 
(BIT) 

9,800 0.296 0.81 93.3 2.91 7.90 916 

Average Texas 
coal (SUB) 

Low gassy 
(SUB) 

8,600 0.011 1.10 97.2 0.1 9.50 839 

Average Texas 
coal (BIT) 

high gassy 
(BIT) 

10,900 0.296 0.81 93.3 3.23 8.80 1019 

*CO2 EFs from coal and gas are from EIA, Voluntary Reporting of Greenhouse Gases Program Table 1 

(downloaded 2/2011). 

ⱡ Upstream CO2 for coal plants was calculated from Table 1 of Alvarez et al.(1), adjusted for heat rates applicable to 

scenarios examined and heat content of coal (lignite transport was assumed to be negligible given proximity to 

power plant).   

The CH4 emission rate associated with Barnett Shale gas used in a natural gas power plant in the 

Dallas-Fort Worth area was determined by normalizing the emissions from all natural gas 

infrastructure exclusive of local distribution as reported in this work (55.8 Mg CH4/h) by the 

amount of natural gas produced in the Barnett Shale counties delivered into the transmission 

pipeline system. Following Alvarez et al. (1), we allocated 56% of estimated CH4 emissions 

from oil production sites to the natural gas supply based on the share of total energy produced by 

oil production sites due to natural gas (this is a small correction as oil wells produce less than 

10% of total oil and gas CH4 emissions in the 25-county Barnett region). The amount of gas 

delivered was estimated to be roughly 16% lower than gross gas production after accounting for 

the volumes of gas lost due to removal of natural gas liquids and non-hydrocarbon gases, 

emissions, and consumptive use at production sites, compressor stations, and processing plants. 

Table S8 Data used to determine allocation of CH4 emissions from oil production sites to the natural gas 

supply. (Source: Lyon et al. (27), SI.)  

  Production Heat Content* Energy Percent 

Gas production sites oil 460,000 5.8 2,660,000 1% 

gas 164,290,000 1.1 180,720,000 99% 

Oil production sites oil 1,230,000 5.8 7,140,000 44% 

gas 8,390,000 1.1 9,230,000 56% 

*Source: (50, 51). 

We make the comparison for Dallas-Fort Worth area electricity to avoid the complication of 

long-distance gas transport and seasonal storage. To apply the analysis to Barnett gas used in 

other areas, transmission and storage emissions would have to be added. Here we provide a 

rough estimate of the likely magnitude of these emissions using existing data, though we note 

that ongoing work may provide updated estimates (13, 41). The 2015 EPA Greenhouse Gas 
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Inventory (GHGI) estimates 2013 emissions from the natural gas industry’s Transmission and 

Storage segment to be 2,176 Gg/y. When normalized by the amount of natural gas delivered to 

consumers in 2013, 32.8 trillion cubic feet (52), the average natural gas leak rate from 

Transmission and Storage is approximately 0.5% of gas delivered, or about one-third of the 1.6% 

loss rate we determined for Barnett natural gas.   

Upstream CO2 emissions for natural gas used in power plants include direct fugitive and vented 

emissions of natural gas stream as well as CO2 from combustion of natural gas used as fuel along 

the upstream supply chain (production sites, compressor stations, and processing plants). 

Fugitive and vented emissions were estimated by scaling national emissions from production and 

processing in the EPA GHGI by the pro-rata share of national gas produced in the Barnett Shale 

(7.7%). Upstream combustion emissions were estimated based on the amount of natural gas used 

as a fuel at production sites; these account for about two-thirds of the total upstream CO2 

emissions.   

Table S9. Coal mine CH4 and CO2 emissions from combustion used in this work (53, 54). 

Coal type 
Coal HHV as 

received (Btu/lb) 
Mine CH4 
(scf/ton) 

Combustion CO2 
(kg/mmBtu) 

Texas lignite (LIG) 6,550 39.9 97.7 

PRB- low gassy (SUB) 8,560 10 97.2 

PRB - high gassy (SUB) 8,560 40 97.2 

Bituminous - high gassy 11,670 360 93.3 

We assumed that any CH4 emissions from the operation of natural gas or coal power plants are 

insignificant, but this assumption deserves further scrutiny.   

Results. 

Based on the TWP approach of Alvarez et al. (1), each percent of natural gas lost to the 

atmosphere prior to end-use combustion adds 33% to the 20-year radiative forcing of the CO2 

produced from complete combustion of the gas without any losses (15% on a 100-year time 

horizon) (Fig. S6A). These estimates account for the effect of all fuel-cycle CO2 emissions (i.e., 

vented, fugitive, and combustion CO2 emissions from the production, processing, transportation 

and consumption of natural gas (Table S7)), and assume a scenario where natural gas is 

consumed continuously, which is appropriate when considering the climate implications of 

individual and economy-wide energy choices. Using an alternative assumption of a one-time 

pulse of emissions results in slightly smaller increases in radiative forcing (29% and 10%, on 20-

year and 100-year time horizons, respectively).   

CH4 emissions from the production, gathering, processing and delivery of Barnett Shale gas 

(~1.6% of gas consumed) substantially increase the cumulative radiative forcing from complete 

combustion of the gas when compared to emissions of CO2 alone: roughly 50% over a 20-year 

basis (~20% on a 100-year basis). Reducing CH4 leakage leads to a proportional decrease in this 

effect (Fig. S6A). 

Our results indicate that, on average, natural gas power plants in the greater Barnett Shale region 

produce climate benefits on all time frames, compared to coal-fired plants in Texas (Fig. S5B). 
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The reference case in Fig. S6B assumes thermal efficiencies for the two plants that are typical of 

the Dallas-Fort Worth area, and the low fugitive CH4 emissions characteristic of the surface 

mined, sub-bituminous coal burned in the area’s coal plants. We also include cases with the 

highest possible efficiency coal plant in Texas, and with CH4 emissions in the Barnett region 

reduced by 45% and 90%.  

However, power plants with heat rates greater than ~10,750 Btu/kWh produce climate damage 

for some period of time (Fig. S6B). This category includes about half of the generating units in 

the region, responsible for about 20% of the electric generation (Fig. S6D). These plants are 

likely to be operated only during peak periods, and are responsible for a relatively small fraction 

of the electricity from all natural gas power plants; nevertheless, this result suggests both natural 

gas leakage and natural gas plant efficiency warrant further attention.   

All but one of the coal plants in Texas use sub-bituminous coal (from surface mines in the 

Powder River Basin) or lignite (from mines in Texas in close proximity to the power plant). Both 

of these coals produce relatively little CH4 compared to bituminous coal from underground mines 

(used in only one Texas plant). Our main analysis assumes sub-bituminous coal whose upstream 

CH4 is less than 20% the lignite value (Table S9). However, TWP results are reasonably similar 

whether the coal plant is assumed to use lignite or sub-bituminous coal (Fig. S7A). By contrast, 

the use of high-gassy bituminous coal significantly changes the TWP result. Fig. S7B indicates 

that for sufficiently low CH4 leakage in the natural gas supply, the high CH4 emissions from 

gassy coal cause the TWP curve to increase instead of decrease over time. Fig. S7C shows that 

TWP values can vary by more than a factor of 3 when comparing combinations of the best and 

worst gas and coal plants.  
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Fig. S6. Effect of CH4 leakage on fuel-cycle radiative forcing and summary of climate influence of 

electric power plants fueled with natural gas from the Barnett Shale compared to coal. (A) Generic effect 

of each percent of natural gas loss on the cumulative radiative forcing of natural gas use (dotted line): 

comparison is to the forcing due to CO2 emissions from the natural gas supply chain and combustion 

alone. The relative increase in cumulative radiative forcing from the continuous operation of an average 

natural gas fired power plant in the Barnett Shale region due to CH4 leakage along the supply chain 

equivalent to 1.6% of gas consumed is greater than the forcing due to CO2 emissions alone by 

approximately 50% and 20% over 20 and 100 years, respectively (blue line). Also shown is the effect of a 

hypothetical 45% reduction in supply chain CH4 leakage in the Barnett Shale (red line). (B) Technology 

Warming Potential (TWP) of the average natural gas power plant in the greater Barnett Shale region using 

locally-sourced gas, relative to the average coal-fired power plant in Texas fueled with low CH4 sub-

bituminous coal (black curve). Other curves show effects of alternative values of CH4 leakage and power 

plant heat rates applied to the scenario in black curve: 45% and 100% reduction in upstream natural gas 

leakage (purple and orange, respectively); 10% increase in natural gas leakage, simulating the top-down 

estimate of Barnett Shale CH4 emissions (green); 30% less efficient natural gas power plant than the 

regional generation-weighted average (10,750 Btu/kWh) (dashed blue); and coal-fired generating unit that 

represents the most efficient unit in Texas (8,640 Btu/kWh) (red). (C) Distribution of effective heat rates 

in 2013 for natural gas power plants in the Barnett Shale region. (D) Cumulative electric generation in 

2013 from the same population of plants. About half of the generating units in the region, responsible for 

about 20% of the electric generation, have a heat rate above 10,750 Btu/kWh— the value above which 

TWP of natural gas plants using Barnett gas is > 1 for some period of time (dashed blue line in panel B).   
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Fig. S7. Sensitivity of Technology Warming Potential (TWP) results to a broad range of alternative 

assumptions. (A) TWP of average Barnett gas plant relative to coal plants under alternative assumptions 

about the type of coal and coal plant heat rate: average Texas coal plant using low-CH4 sub-bituminous 

coal (blue) and lignite (green); least efficient coal plant using high-CH4 bituminous coal (purple); and the 

most efficient coal plant using low-CH4 sub-bituminous coal (red). (B) TWP of the average Barnett gas 

plant with alternative natural gas leakage assumptions relative to the average Texas coal plant using high-

CH4 bituminous coal: baseline Barnett natural gas leakage (green); 45% less leakage (purple); and 90% 

less leakage (orange). Note that for sufficiently low natural gas leakage relative to the upstream coal CH4 

emissions, the shape of the TWP curve can change from monotonically decreasing (green) to 

monotonically increasing (orange). (C) TWP results comparing best and worst Barnett area natural gas 

power plants using local gas to the best and worst Texas coal plant scenarios: worst natural gas unit 

compared to best coal plant using low-CH4 subbituminous coal (blue); worst natural gas unit compared to 

the worst coal plant using high-CH4 bituminous coal; best gas unit compared to best coal unit using low-

CH4 sub-bituminous coal (gray); and best gas unit compared to the worst coal plant using high-CH4 

bituminous coal (red). 
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S7: Analysis of the uncertainty of top-down and bottom-up estimates. 

Uncertainty in the reported top-down mean. 

Karion et al. (19) reported the average top-down (TD) CH4 estimate to be the arithmetic mean of 

the estimates from the individual flights; with the 95% confidence interval (CI) determined using 

a bootstrapping method (resampling, with replacement, the estimates from the individual flights). 

As described in Smith et al.
 
(29), the October 25

th
 flight was considered an outlier (analysis of 

this flight and estimates including it are shown in S7). Using this approach, for the seven flights 

considered in this work, the total CH4 estimate is 71 Mg CH4/h, with a 95% CI of 59 – 83 Mg 

CH4/h (a relative uncertainty of ± 17%) (Table S10). 

Table S10 Summary of TD and BU estimates for each of the flights, with 95% confidence intervals (CI). 

Individual BU estimates are for source regions corresponding to areas sampled by the aircraft on each 

flight (with 95% CI). 
Flight Total TD CH4 

emissions        

(Mg CH4/h) 
a
 

Total BU CH4 

emissions (this 

work)    (Mg 

CH4/h) 

Fossil TD CH4 

emissions             

(Mg CH4/h) 

Fossil BU CH4 

emissions (this 

work) (Mg CH4/h) 

March 25, 2013 78 (56, 100) 54 (45, 65) 62(44, 80) 44 (36, 55) 

March 27, 2013 87 (69, 105) 60 (50, 72) 69(54, 84) 41 (35, 51) 

March 30, 2013 78 (47, 109) 83 (70, 98) 62(37, 87) 58 (48, 72) 

October 16, 2013 41 (33, 49) 76 (64, 90) 33(26, 39) 52 (44, 65) 

October 19, 2013 61 (54, 68) 71 (60, 85) 48(42, 55) 52 (43, 64) 

October 20, 2013 88 (53, 123) 80 (68, 96) 70(48, 98) 57 (47, 71) 

October 28, 2013 64 (37, 91) 73 (62, 87) 51(29, 73) 52 (43, 64) 

Average 71 (59, 83) 71 (64,78) 56 (47, 66) 51 (47, 55) 
a
 As reported in Karion et al. (19). 

As discussed in the main paper, we used the result reported by Karion et al.
 
(19) (based on Smith 

et al.
 
(29)) that 79.5% (73.5% – 84%; 95% CI) of Barnett CH4 emissions comes from fossil 

sources, to estimate fossil CH4 emissions from total CH4 emissions. After propagating the 

additional uncertainty of the fossil attribution factor (in quadrature) to each of the individual 

flights and to the average TD estimate,  the average TD fossil CH4 estimate is 56 Mg CH4/h, with 

a 95% CI of 47 – 66 Mg CH4/h. 

Uncertainty in the bottom-up mean. 

For the bottom-up (BU) estimates, the CI of the CH4 estimates for each of the source regions 

sampled by individual flights reflects the uncertainty in the emission factors for source types 

analyzed with the statistical estimators in this work (production sites, compressor stations, and 

processing plants (Methods, Table 1, main text) plus the uncertainty in the emission factors for 

the rest of the emission categories considered in the inventory (as reported in Lyon et al.
 
(27)). 

Our reported CI for the BU estimates is thus based exclusively on the uncertainty in emission 

factors. Lyon et al. uses published uncertainty estimates for some sources (e.g., gathering 

pipelines, landfills) and excludes uncertainty for minor sources (e.g., geologic seepage) lacking 

reputable uncertainty estimates. These sources account for 7% and 33% of the fossil and total 

emissions and therefore should have minor impact on the final uncertainty. Additional 

uncertainty due to activity factors is expected, but was not included in the absence of empirical 

data; however, we expect this uncertainty should be minimal due to the comprehensive effort to 
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identify sources from multiple data sources. There may be additional uncertainty from source 

categories excluded from the BU inventory (e.g., wetlands), but the close agreement of the TD 

and BU estimates suggests the contribution of these sources is small. Finally, another source of 

uncertainty in BU estimates is the spatial extent of flight-specific source regions sampled (which 

determines the total sources aggregated for each individual flight); this uncertainty is also 

expected to be less than 10 – 20% for each flight (see below). 

In accordance with the method for estimating the 95% CI from the TD estimate, a bootstrapping 

method was applied to the BU estimates from the individual flights. Thus, the total BU CH4 

estimate is 71 Mg CH4/h, with a 95% CI of 64 – 78 Mg CH4/h. Similarly, the fossil BU CH4 

estimate is 51 Mg CH4/h, with a 95% CI of 47 – 55 Mg CH4/h. 

Sensitivity to boundary of flight envelopes. 

Day-to-day differences in the BU CH4 estimates are due almost entirely to changes in the 

assumed source areas for each flight because emissions from virtually all sources are assumed to 

be constant (new well completions, accounting for less than 1% of total CH4, were allowed to 

vary). Table S11 summarizes the differences between the source regions estimated to be sampled 

by the mass balance flights. BU estimates were relatively insensitive to modest changes in the 

assumed upwind and lateral boundaries of TD flight envelopes (Fig. S4). 

BU emission estimates are very sensitive to the boundaries of flight envelopes when they are 

near the 8 core counties; this is the section of the Barnett Shale production region where most of 

the oil and gas sites and facilities are located
 
(27) (Fig. S3). When one of the boundaries is very 

close to the 8 core county boundaries, changes can have a significant impact. As illustrated in 

Fig. S3, the east boundary of the March 25
th

 source region does not cover the core counties 

entirely, consequently, emission estimates are very sensitive to changes in the location of the east 

boundary (a 25 km reduction/extension causes a ± 21% change in the BU estimate) (Fig. S8). A 

similar situation is observed with the west boundary of the March 27
th

 source region, which cuts 

through Parker and Hood counties (both counties are part of the Barnett 8 core counties). A 

reduction of 25 km of that west boundary causes a reduction of 16% in the BU estimate. 

The significant changes in BU estimates (> 20%) observed for the 50 km reductions (e.g. March 

25
th

, October 20
th

, and October 28
th

) imply that the sampled source region may have captured the 

8 core county region in its entirety. 

With the exception of the cases stated above, where the reductions or expansions affected the 

overlap with the 8 core county region, expanding or reducing individual boundaries by 25 km or 

less did not change BU emissions estimates by more than ~10%. This suggests that on most days 

the mass balance flights effectively sampled the core emissions area (Fig. S8). 
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Table S11: Summary of source regions estimated to be sampled by mass balance flights and from which 

bottom-up (BU) inventories were developed (results also shown in Fig. 1 (main text) and Table S10) 

(with 95% confidence intervals (CI)). 

Flight 
Total area 

(km
2
) 

Average wind 

direction 
a
  

Total TD CH4 

emissions (Mg 

CH4/h) 
a
 

Total BU CH4 

emissions (this 

work) (Mg CH4/h) 

March 25, 2013 24,700 NNW 78 (56, 100) 54 (45, 65) 

March 27, 2013 28,700 S 87 (69, 105) 60 (50, 72) 

March 30, 2013 50,200 SW 78 (47, 109) 83 (70, 98) 

October 16, 2013 40,500 N 41 (33, 49) 76 (64, 90) 

October 19, 2013 38,600 N 61 (54, 68) 71 (60, 85) 

October 20, 2013 50,300 S 88 (53, 123) 80 (68, 96) 

October 25, 2013
b
 63,300 SE 109 (79, 139) 87 (74, 104) 

October 28, 2013 48,500 SSE 64 (37, 91) 73 (62, 87) 
a
 As reported in Karion et al.

 
(19). 

b 
Flight for October 25

th
 was excluded from the analysis; as discussed in Smith et al.

 
(29). See section S7 for more 

details. 

 

Uncertainty in the comparison of top-down and bottom-up estimates. 

Let xTDj and xBUj be the pair of TD and BU estimates, respectively, for each individual flight j. 

The difference between TD and BU for each j can be expressed as: 

𝑥𝑇𝐷𝑗 − 𝑥𝐵𝑈𝑗           (S6.1) 

We treat each difference as an independent observation and estimate the mean and standard error 

of the total CH4 estimates. For the case of the fossil CH4 estimates we need to account for the 

additional uncertainty of the attribution factor reported by Karion et al.
 
(19) (based on Smith et 

al.
 
(29)) that 79.5% (73.5% – 84%; 95% CI) of Barnett CH4 emissions comes from fossil 

sources. Thus, the mean fossil difference (5.4 Mg CH4/h with standard deviation of 14 Mg 

CH4/h) and the fossil attribution factor (79.5% with a standard deviation of 6%) are treated as 

independent variables; the variance of the product of those two variables is used to determine the 

standard error and 95% CI of the mean difference of fossil CH4 (Table S12). 

Table S12. Summary of comparison between top-down (TD) and bottom-up (BU) estimates. 

Estimate Mean difference    

(Mg CH4/h) 

Standard error    

(Mg CH4/h) 

Total CH4 0.10 7.5 

Fossil CH4 5.4 9.1 

Thus, for total CH4, the difference between TD and BU, with a 95% CI, would be 0.1% ± 21% 

(expressed as a percent of the average TD estimate). In absolute units, the difference (with 95% 

CI) would be 0.1 ± 15 Mg CH4/h. 

For the case of fossil CH4, the difference between TD and BU; with 95% CI, would be 9.6% ± 

32% (expressed as a percent of the average TD estimate). In absolute units, the difference (with 

95% CI) would be 5.4 ± 18 Mg CH4/h. 
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Thought experiment: Effect of number of flights on top-down (TD) estimates. 

The uncertainty due to the daily variability in TD CH4 estimates using aircraft mass balance 

methods can be mitigated by conducting multiple flights. Similar studies published to date have 

relied on only one or two flights to estimate emissions (2–4).  As noted in Karion et al. (19), 

taking the average of 8 mass balance flights was an important strength of their study. Using a 

bootstrap approach that resampled (with replacement) the distribution of 8 flight estimates in 

Karion et al., we estimate a 38% probability that a single flight could produce a result outside the 

reported 95% CI, with a maximum potential difference of more than 40% from the reported 8-

flight mean estimate. See Table S13, which also shows results for subsets of 2–7 flights.   

Table S13. Simulation of the effect of the number of flights on the probability that the resulting average 

falls outside Karion et al.’s (19) 95% confidence interval (CI) for total CH4 emissions in the Barnett Shale 

region (76 ± 13 Mg CH4/h). 

Number of 
flights 

Probability that average 
falls outside of Karion et 
al.’s 95% CI* (below lower 
CI, above upper CI) 

Maximum relative difference of possible N-flight 
averages relative to Karion et al.’s reported 8-

flight mean value 

Minimum value Maximum value 

1 38% (25%, 13%) -46% 44% 

2 32% (18%, 14%) -32% 30% 

3 23% (12%, 11%) -27% 25% 

4 18% (9%, 8%) -19% 19% 

5 13% (7%, 6%) -15% 16% 

6 10% (6%, 4%) -10% 11% 

7 7% (4%, 3%) -6% 7% 

*The reported 95% CI is based on the mean of eight estimates, exclusive of any systematic error.   
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Fig. S8. Sensitivity to boundary of flight envelopes. Relative changes in daily bottom-up (BU) CH4 

emissions due to 10, 25, and 50 km changes to the boundaries of source areas sampled by individual 

flights (Fig. S3):  (A) upwind boundary; (B) east boundary; (C) west boundary.  The significant changes 

in BU estimates (> 20%) observed for the 50 km reductions (e.g., March 25
th
, October 20

th
, and October 

28
th
) imply that the sampled source region is not covering the 8 core county region in its entirety. With the 

exception of the cases stated above, where the reductions or expansions affected the 8 core county region, 

expanding or reducing individual boundaries by 25 km or less did not change BU emissions estimates by 

more than ~10%. This suggests that on most days the mass balance flights effectively sampled the core 

emissions area. 
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S8: Discussion about the October 25
th

, 2013 flight as an outlier. 

As mentioned in Karion et al.
 
(19), the region of influence for the October 25

th
 flight includes a 

larger area than the rest of the flights; as shown in Fig. S4 and Table S11, the source region for 

this flight is roughly 58% bigger than the average area of the rest of the flights. This source 

region has 14% more gas production and four times more liquids production than the total for the 

Barnett 8 core counties
 
(19). This produces a top-down (TD) CH4 total estimate of 109 ± 30 Mg 

CH4/h, which is roughly 54% higher than the average of the rest of the flights.  

In a similar way, Smith et al.
 
(29) produced an ethane estimate of 16.4 ± 7.0 Mg C2H6/h, which is 

2.5 times higher than the average of the rest of the flights (see Fig. S2A). Due to the difference 

between the October 25
th

 flight and the rest of the flights Smith et al. considered this flight as an 

outlier and excluded it from their analysis. Consequently, the estimates presented in this work’s 

main text also excluded the October 25
th

 flight, leaving seven CH4 TD estimates and six ethane 

TD estimates. 

Table S14 summarizes the TD and bottom-up (BU) estimates if the October 25
th

, 2013 flight is 

included in the analysis. 

Table S14. Summary of top down (TD) and bottom-up (BU) estimates when the October 25
th
, 2013 flight 

is included (with 95% confidence intervals (CI)). TD independent fossil reflects the independent TD 

estimate that was determined in section S2; using the ethane estimates from Smith et al. (29) and the 

fossil CH4:C2H6 ratio (8.7 ± 2.8; mass basis) that was derived from reanalysis of Yacovitch et al.
 
(32). 

Estimate Average (Mg CH4/h) 95% CI (Mg CH4/h) 

TD total CH4 76 (63,88) 

BU total CH4 73 (66,80) 

TD fossil CH4 60 (49, 71) 

TD independent fossil CH4 69 (38,101) 

BU fossil CH4 52 (47, 55) 

 

Thus, for total CH4, the difference between TD and BU, with a 95% confidence interval (CI), 

would be 3.7% ± 18% (expressed as a percent of the average TD estimate). In absolute units, the 

difference (with 95% CI) would be 2.8 ± 14 Mg CH4/h. 

For the case of fossil CH4, the difference between TD and BU, with a 95% CI, would be 13% ± 

31% (expressed as a percent of the average TD estimate). In absolute units, the difference (with 

95% CI) would be 8.0 ± 19 Mg CH4/h. 

The main difference is observed with the independent TD estimate, which uses an independent 

CH4:C2H6 ratio (mass basis) of 8.7 ± 2.8 applied to the individual TD ethane estimates reported 

in (29) (see S3). When the October 25
th

, 2013 flight is incorporated to obtain the independent TD 

estimate for fossil CH4, the estimate would be 69 ± 31 Mg CH4/h (instead of 57 ± 18 Mg CH4/h; 

when October 25
th

, 2013 flight was excluded). 
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